Skip to content

HackerRank Bitwise Xor Operations

Published: at 08:23 AM

Table of contents

Open Table of contents

Description

Optimize a service from the following pseudocode:

function getXoredArray(array, k):
    n = size of the array
    loop i = 0 to k - 1:
        # ^ represents the bitwise xor operation
        array[i % n] = array[i % n] ^ array[n - (i % n) - 1]
    return array

More formally, given an array arr of n integers and an integer k, replace arr[i % n] with arr[i % n] ^ arr[n - (i % n) - 1] for each i from 0 to k - 1 where ^ represents the bitwise xor operation and % is the modulo division operator. Find the final array after performing the replacements.

Example 1

Suppose n = 4, arr = [5, 6, 7, 8] and k = 3.

ii1i2arr[i1]arr[i2]XORarr
003581313,6,7,8
11267113,1,7,8
22171613,1,6,8

For each i from 0 to 2 inclusive, perform the operation. In the table,

Example 2

Input: arr=[6,1,9], k=7

Output: [6,0,15]

Explanation:

The array will change to [15,1,9], [15,0,9], [15,0,6], [9,0,6], [9,0,6], [9,0,15], [6,0,15].

Example 3

Input: arr=[1,2], k=2

Output: [3,1]

Constraints:

Solution

Idea1

The straightforward thought would be to apply the xor operation k times.

Complexity: Time O(k), Space O(1).

Python

def xor_operations(arr: list[int], k: int) -> list[int]:
    """k,1"""
    n = len(arr)
    for i in range(k):
        arr[i % n] ^= arr[n - (i % n) - 1]
    return arr

Idea2

In constraints section, k could be very large. Can we improve the time complexity?

The process of applying the xor operations essentially is equivalent to the bitwise xor swap function. See bitwise xor swap.

So for every three xor operations, the mirrored (arr[i] and arr[n-1-i]) elements in the array are swapped. If the element is a mirror with itself, it becomes 0.

Let’s iterate through some xor operations for array [6,1,9] and observe how the array changes.

karraynote
-[6,1,9]init
1[15,1,9]a[0]=6^9
2[15,0,9]a[1]=1^1
3[15,0,6]a[2]=15^9
4[9,0,6]a[0]=15^6
5[9,0,6]a[1]=0^0
6[9,0,15]a[2]=6^9
7[6,0,15]a[0]=9^15
8[6,0,15]a[1]=0^0
9[6,0,9]a[2]=6^15
10[15,0,9]a[1]=6^9

Firstly, we can see that the middle element (for arrays with odd number of elements) changes to 0 and stays as 0 if k >= n//2.

Secondly, we see that the other elements (excluding the middle element) reset after 3*n xor operations.

let a = a[i], b = a[n-1-i], xor = a^b.

We can see that a[i] will loop in [xor, a, b] and a[n-i-1] will loop in [b, a, xor].

We need to map k and i to an index into the three element array above to get the value for a[i] and a[n-1-i].

kitarget indexnote
[1,n]00when k in [1,3], a[0]=15, [xor,a,b][0]
[n+1,2n]01when k in [4,6], a[0]=9, [xor,a,b][1]
[2n+1,3n]02when k in [7,9], a[0]=6, [xor,a,b][2]

So for array[i], we can use (k+n-1-i)//n-1 to calculate the target index.

Similarly, for array[n-1-i], we can use (k+n+i)//n-1 to calculate the target index.

Ooh la la! We reduce the time complexity from O(k) to O(n//2), a 10^7 reduction according to the constraints.

Complexity: Time O(n//2), Space O(1).

Python

def xor_operations_1(arr: list[int], k: int) -> list[int]:
    """n,1"""
    n = len(arr)
    if n % 2 == 1:
        arr[n // 2] = 0 if k > n // 2 else arr[n // 2]
    k %= n * 3  # k in [0,3n-1]
    for i in range(n // 2):
        a, b = arr[i], arr[n - 1 - i]
        xor = a ^ b
        arr[i] = [xor, b, a][(k - 1 - i) // n]  # (k+n-1-i)//n-1, map k in [1,n]->0
        arr[n - 1 - i] = [b, a, xor][(k + i) // n]  # (k+n+i)//n-1, map k in [0,n-1]->0
    return arr

Unit Test

class TestXorOperations(TestCase):
    def test_xor_operations(self):
        cases = [
            ([10, 20], 1, [30, 20]),
            ([10, 20], 2, [30, 10]),
            ([10, 20], 3, [20, 10]),
            ([10, 20], 4, [20, 30]),
            ([10, 20], 5, [10, 30]),
            ([10, 20], 6, [10, 20]),
            ([10, 20], 7, [30, 20]),
            ([10, 20], 8, [30, 10]),
            ([6, 1, 9], 1, [15, 1, 9]),
            ([6, 1, 9], 2, [15, 0, 9]),
            ([6, 1, 9], 3, [15, 0, 6]),
            ([6, 1, 9], 4, [9, 0, 6]),
            ([6, 1, 9], 5, [9, 0, 6]),
            ([6, 1, 9], 6, [9, 0, 15]),
            ([6, 1, 9], 7, [6, 0, 15]),
            ([6, 1, 9], 8, [6, 0, 15]),
            ([6, 1, 9], 9, [6, 0, 9]),
            ([6, 1, 9], 10, [15, 0, 9]),
            ([1, 2], 2, [3, 1]),
            ([5, 6, 7, 8], 3, [13, 1, 6, 8]),
            ([2], 1, [0]),
            ([2], 2, [0]),
            ([1, 2, 3, 4, 5], 1, [4, 2, 3, 4, 5]),
            ([1, 2, 3, 4, 5], 3, [4, 6, 0, 4, 5]),
        ]
        for arr, k, exp in cases:
            with self.subTest(arr=arr, k=k, exp=exp):
                self.assertEqual(exp, xor_operations(arr.copy(), k))
                self.assertEqual(exp, xor_operations_1(arr.copy(), k))

Previous Post
Cheatsheet for Math Knowledge Needed for LeetCode Algorithm Questions (Geometric Series and Arithmetic Progression Sum)
Next Post
Fun Bit Tricks (Manipulations)