Table of contents
Open Table of contents
Description
Design a data structure that follows the constraints of the Least Recently Used (LRU) cache.
Implement the LRUCache
class:
LRUCache(int capacity)
Initialize the LRU cache with positive sizecapacity
.int get(int key)
Return the value of thekey
if the key exists, otherwise return-1
.void put(int key, int value)
Update the value of thekey
if thekey
exists. Otherwise, add thekey-value
pair to the cache. If the number of keys exceeds thecapacity
from this operation, evict the least recently used key.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4
Constraints:
1 <= capacity <= 3000
0 <= key <= 104
0 <= value <= 105
- At most
2 * 105
calls will be made toget
andput
.
Solution
Idea
We can use a doubly linked list and a hash map so that both the put
and get
operations can be O(1) time complexity.
We cannot use Java standard library’s LinkedList
since remove
is O(n) time complexity because we need to locate the node in the linked list.
As far as I know, there no standard library implementation of a doubly or singly linked list node. Java has LinkedList
and C++ has std::list
and the node data structure is encapsulated. Maybe the data structure itself is very trivial to write so no standard library provides it.
Wait for the Rust solution, it will be fun.
Complexity: Time O(1), Space O(n).
Java
public class LRUCache {
Map<Integer, Node> cache; // key -> node
int cnt;
int capacity;
Node head, tail;
public LRUCache(int capacity) {
this.cnt = 0;
this.capacity = capacity;
cache = new HashMap<>();
head = new Node();
tail = new Node();
head.next = tail;
tail.pre = head;
}
private void addToHead(Node node) {
node.pre = head;
node.next = head.next;
head.next.pre = node;
head.next = node;
}
private void removeNode(Node node) {
node.pre.next = node.next;
node.next.pre = node.pre;
}
private void moveToHead(Node node) {
removeNode(node);
addToHead(node);
}
private Node popTail() {
Node res = tail.pre;
removeNode(res);
return res;
}
public int get(int key) {
Node node = cache.get(key);
if (node == null) return -1;
moveToHead(node);
return node.v;
}
public void put(int key, int value) {
Node node = cache.get(key);
if (node == null) {
Node newNode = new Node(key, value);
cache.put(key, newNode);
addToHead(newNode);
++cnt;
if (cnt > capacity) {
Node tail = popTail();
cache.remove(tail.k);
--cnt;
}
} else {
node.v = value;
moveToHead(node);
}
}
static class Node {
int k;
int v;
Node pre;
Node next;
Node(int k, int v) {
this.k = k;
this.v = v;
}
Node() {
}
}
}
Python
def delete(node):
node.pre.nex = node.nex
node.nex.pre = node.pre
class LRUCache:
"""118 ms, 77.4 mb"""
def __init__(self, capacity: int):
self.head, self.tail = Node(), Node()
self.head.nex = self.tail
self.tail.prev = self.head
self.kn = dict()
self.cnt = 0
self.cap = capacity
def get(self, key: int) -> int:
if key in self.kn:
self.move_front(self.kn[key])
return self.kn[key].v
else:
return -1
def put(self, key: int, value: int) -> None:
if key in self.kn:
self.kn[key].v = value
self.move_front(self.kn[key])
else:
node = Node(k=key, v=value)
self.add_front(node)
self.cnt += 1
self.kn[key] = node
if self.cnt > self.cap:
tmp = self.pop_tail()
del self.kn[tmp.k]
self.cnt -= 1
def pop_tail(self):
tmp = self.tail.pre
delete(tmp)
return tmp
def add_front(self, node):
self.head.nex.pre = node
node.nex = self.head.nex
node.pre = self.head
self.head.nex = node
def move_front(self, node):
delete(node)
self.add_front(node)
class Node:
def __init__(self, k=0, v=0, pre=None, nex=None):
self.k = k
self.v = v
self.pre = pre
self.nex = nex