Skip to content

LeetCode 540 LintCode 1183 Single Element in a Sorted Array

Published: at 06:23 AM

Table of contents

Open Table of contents

Description

Idea

The short solution below takes a couple of discoveries.

  1. The target element must be at an even index.
  2. In binary search, we can compare the mid index element with its neighbor index.
    1. If mid is odd, we compare with mid^1==mid-1.
    2. If mid is even, we compare with mid^1==mid+1.
  3. In both cases above, there are even number of elements on the left of mid and its neighbor. If nums[mid]==nums[neighbor], we know the single element must be on the right. Otherwise, single element is on the left of mid (including mid).

Complexity: Time O(logn)O(\log n), Space O(1)O(1).

Python

class Solution:
    """0 ms, 24.3 mb"""

    def singleNonDuplicate(self, nums: List[int]) -> int:
        l, r = 0, len(nums) - 1
        while l < r:
            mid = l + (r - l) // 2
            if nums[mid] == nums[mid ^ 1]:
                l = mid + 1
            else:
                r = mid
        return nums[l]

Java

class Solution {
    // binary search, lgn time, 1 space, 0ms, 50.24Mb
    public int singleNonDuplicate(int[] nums) {
        int l = 0, r = nums.length - 1;
        while (l < r) { // single element must be on even index
            int mid = l + (r - l) / 2;
            if (nums[mid] == nums[mid ^ 1]) l = mid + 1; // compare with mid+1 when even, mid-1 when odd
            else r = mid;
        }
        return nums[l];
        // for [3,3,7,7,10,11,11] l,r: [0,6],[4,6],[4,5],[4,4]
    }
}

Rust

impl Solution {
    pub fn single_non_duplicate(nums: Vec<i32>) -> i32 {
        let (mut l, mut r) = (0, nums.len() - 1); // constraints len>=1
        while l < r {
            let m = l + (r - l) / 2;
            if nums[m] != nums[m ^ 1] { r = m } else { l = m + 1 }
        }
        nums[l]
    }
}

C++

class Solution {
public:
    int singleNonDuplicate(vector<int> &nums) {
        int l = 0, r = nums.size() - 1;
        while (l < r) {
            int m = l + (r - l) / 2;
            if (nums[m] == nums[m ^ 1]) l = m + 1;
            else r = m;
        }
        return nums[l];
    }
};

Previous Post
How to Draw Circles and Arcs with Python Library Matplotlib
Next Post
Linux Cheatsheet, tips and Commands