Table of contents
Description
Idea
The short solution below takes a couple of discoveries.
- The target element must be at an even index.
- In binary search, we can compare the mid index element with its neighbor index.
- If mid is odd, we compare with
mid^1==mid-1
. - If mid is even, we compare with
mid^1==mid+1
.
- If mid is odd, we compare with
- In both cases above, there are even number of elements on the left of
mid
and its neighbor. Ifnums[mid]==nums[neighbor]
, we know the single element must be on the right. Otherwise, single element is on the left ofmid
(includingmid
).
Complexity: Time , Space .
Python
class Solution:
"""0 ms, 24.3 mb"""
def singleNonDuplicate(self, nums: List[int]) -> int:
l, r = 0, len(nums) - 1
while l < r:
mid = l + (r - l) // 2
if nums[mid] == nums[mid ^ 1]:
l = mid + 1
else:
r = mid
return nums[l]
Java
class Solution {
// binary search, lgn time, 1 space, 0ms, 50.24Mb
public int singleNonDuplicate(int[] nums) {
int l = 0, r = nums.length - 1;
while (l < r) { // single element must be on even index
int mid = l + (r - l) / 2;
if (nums[mid] == nums[mid ^ 1]) l = mid + 1; // compare with mid+1 when even, mid-1 when odd
else r = mid;
}
return nums[l];
// for [3,3,7,7,10,11,11] l,r: [0,6],[4,6],[4,5],[4,4]
}
}
Rust
impl Solution {
pub fn single_non_duplicate(nums: Vec<i32>) -> i32 {
let (mut l, mut r) = (0, nums.len() - 1); // constraints len>=1
while l < r {
let m = l + (r - l) / 2;
if nums[m] != nums[m ^ 1] { r = m } else { l = m + 1 }
}
nums[l]
}
}
C++
class Solution {
public:
int singleNonDuplicate(vector<int> &nums) {
int l = 0, r = nums.size() - 1;
while (l < r) {
int m = l + (r - l) / 2;
if (nums[m] == nums[m ^ 1]) l = m + 1;
else r = m;
}
return nums[l];
}
};