Table of contents
Open Table of contents
Description
Question links: GFG, LeetCode 713, LintCode 1075.
The question is on HackerRank too.
Given an array of integers nums
and an integer k
, return the number of contiguous subarrays where the product of all the elements in the subarray is strictly less than k
.
Example 1:
Input: nums = [10,5,2,6], k = 100
Output: 8
Explanation: The 8 subarrays that have product less than 100 are:
[10], [5], [2], [6], [10, 5], [5, 2], [2, 6], [5, 2, 6]
Note that [10, 5, 2] is not included as the product of 100 is not strictly less than k.
Example 2:
Input: nums = [1,2,3], k = 0
Output: 0
Constraints:
1 <= nums.length <= 3 * 10^4
1 <= nums[i] <= 1000
0 <= k <= 10^6
Hint 1
For each j, let opt(j) be the smallest i so that nums[i] * nums[i+1] * … * nums[j] is less than k. opt
is an increasing function.
HackerRank Question Description
Returns: long int: the number of subarrays whose product is less than or equal to k.
Constraints
One variation is that the product can be equal to k
. And there is some difference in the constraints.
We can solve these questions with the same algorithm.
Idea1
We could use a sliding window to maintain the subarray.
- We start with
left (l)
andright (r)
both at 0. The product start at1
. - In each iteration, we multiply
nums[r]
. Product is for window[l,r]
inclusive. - If the product becomes greater than or equal to
k
, we shrink the window by increasingl
until the product is less thank
. - The number of subarrays for the window
[l,r]
inclusive isr-l+1
. For example, consider example 1 above. For window[0,1]
array[10,5]
. The subarrays are[10,5]
and[5]
and the count is1-0+1
. - We need to handle the edge case when
k<=1
. Considering the constraint that the element values are in[1,1000]
, no valid subarrays can possibly have a product of less than 1. So we can return 0.
Complexity: Time , Space .
Potential bugs:
- forget edge case
k<=1
- rust cast to i32
- if incremented r,
r-l
elser-l+1
Java
// sliding window, n, 1. 4ms, 48mb.
class Solution {
public int numSubarrayProductLessThanK(int[] nums, int k) {
if (k <= 1) return 0;
int res = 0, prod = 1;
for (int l = 0, r = 0; r < nums.length; r++) {
prod *= nums[r]; // expand the sliding window
while (prod >= k) prod /= nums[l++]; // shrink
res += r - l + 1;
}
return res;
}
}
Python
class Solution:
"""43 ms, 19.35 mb"""
def numSubarrayProductLessThanK(self, nums: list[int], k: int) -> int:
if k <= 1: return 0
res, l, r, prod = 0, 0, 0, 1
while r < len(nums):
prod *= nums[r]
r += 1
while prod >= k:
prod //= nums[l]
l += 1
res += r - l # not r-l+1 since r incremented
return res
Unit Test
class TestSolution(TestCase):
def test_num_subarray_product_less_than_k(self):
cases = [
([4, 13, 20, 32, 44, 59, 61, 71, 75, 86, 88], 567601, 32),
([1, 2, 3], 7, 6),
([2, 3, 4], 7, 4),
([1, 2, 3], 4, 4),
([10, 5, 2, 6], 100, 8),
([1, 2, 3], 0, 0),
]
tbt = Solution()
for arr, k, exp in cases:
with self.subTest(arr=arr, k=k, exp=exp):
self.assertEqual(tbt.numSubarrayProductLessThanK(arr, k), exp)
Rust
/// 0 ms, 2.6 mb
impl Solution {
pub fn num_subarray_product_less_than_k(nums: Vec<i32>, k: i32) -> i32 {
if k <= 1 { return 0; }
let (mut res, mut prod, mut l, mut r, n) = (0, 1, 0, 0, nums.len());
while r < n {
prod *= nums[r];
r += 1;
while prod >= k {
prod /= nums[l];
l += 1;
}
res += r - l;
}
res as i32
}
}
Idea2
If may overflow in some programming languages, the comparison prod >= k
may run into issues. We can use the idea of a prefix sum array.
Let’s use example 1 above.
- We build a log prefix product array with a dummy
0th
element. - The array is .
- To get the product between indexes
[i,j]
inclusive, we can use the log prefix product arraylps[j+1] - lps[i]
. - We iterate through the array considering the subarray starting with index
cur
. - We perform binary search to find the ending index
low
. Elements in[cur,lo-2]
have a product less thank
. The count islo-cur-1
.
Complexity: Time , Space .
Java
// binary search, nlgn, n. 28ms, 47.62mb.
static class Solution2 {
public int numSubarrayProductLessThanK(int[] nums, int k) {
if (k == 0) return 0; // [10,5,2,6] k:100
double logK = Math.log(k);
int n = nums.length;
double[] lps = new double[n + 1]; // log prefix sum [0, lg10, lg50, lg100, lg600]
for (int i = 0; i < n; i++) lps[i + 1] = lps[i] + Math.log(nums[i]);
int res = 0;
for (int cur = 0; cur < n; cur++) {
int low = cur + 1, high = n + 1;
while (low < high) {
int mid = low + (high - low) / 2;
if (lps[mid] - lps[cur] < logK - 1e-9) low = mid + 1;
else high = mid;
}
res += low - cur - 1; // cur=1, lg(5*2*6)<lg100, lo ends at 5, 5-1-1==3
}
return res;
}
}
Python
class Solution2:
"""541 ms, 19.86 mb"""
def numSubarrayProductLessThanK(self, nums: list[int], k: int) -> int:
if k <= 1: return 0
res, lgK, n = 0, math.log(k), len(nums)
lps = [0]
for i in range(n):
lps.append(lps[-1] + math.log(nums[i]))
for i in range(n):
lo, hi = i + 1, n + 1
while lo < hi:
mid = lo + (hi - lo) // 2
if lps[mid] - lps[i] < lgK - 1e-9:
lo = mid + 1
else:
hi = mid
res += lo - i - 1
return res