Skip to content

LeetCode 1804 LintCode 3729 Implement Trie II

Updated: at 09:23 AM

Table of contents

Open Table of contents

Description

A trie (pronounced as “try”) or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.

Implement the Trie class:

Example 1:

Input

["Trie", "insert", "insert", "countWordsEqualTo", "countWordsStartingWith", "erase", "countWordsEqualTo", "countWordsStartingWith", "erase", "countWordsStartingWith"]
[[], ["apple"], ["apple"], ["apple"], ["app"], ["apple"], ["apple"], ["app"], ["apple"], ["app"]]

Output

[null, null, null, 2, 2, null, 1, 1, null, 0]

Explanation
Trie trie = new Trie();
trie.insert("apple");               // Inserts "apple".
trie.insert("apple");               // Inserts another "apple".
trie.countWordsEqualTo("apple");    // There are two instances of "apple" so return 2.
trie.countWordsStartingWith("app"); // "app" is a prefix of "apple" so return 2.
trie.erase("apple");                // Erases one "apple".
trie.countWordsEqualTo("apple");    // Now there is only one instance of "apple" so return 1.
trie.countWordsStartingWith("app"); // return 1
trie.erase("apple");                // Erases "apple". Now the trie is empty.
trie.countWordsStartingWith("app"); // return 0

Constraints:

Background

As the picture from wikipedia shows, a trie is a efficient data structure dealing with alphabetic languages such as English, Spanish, and French.

wikipedia picture

It is especially efficient for search miss comparing to a hash set when used for strings. Can you explain why?

Solution

Idea

We can modify the trie node from LeetCode 208 Implement Trie. We can add two fields to represent the number of words having this prefix and ending at this node. We no longer need the boolean to indicate whether this node is the end of a word.

If space is a concern, we can remove the links where the value become 0 after erase.

Complexity: Time O(n), Space O(n).

Python

class Trie:
    def __init__(self):
        self.next = dict()
        self.v = self.pv = 0

    def insert(self, word: str):
        self.add(word, 1)

    def add(self, word: str, n: int):
        cur = self
        for c in word:
            if c not in cur.next:
                cur.next[c] = Trie()
            cur = cur.next[c]
            cur.pv += n
        cur.v += n

    def count_words_equal_to(self, word: str) -> int:
        node = self.get(word)
        return 0 if node is None else node.v


    def count_words_starting_with(self, prefix: str) -> int:
        node = self.get(prefix)
        return 0 if node is None else node.pv

    def erase(self, word: str):
        self.add(word, -1)

    def get(self, word):
        cur = self
        for c in word:
            if c not in cur.next:
                return None
            cur = cur.next[c]
        return cur

Previous Post
LeetCode 811 LintCode 1006 Subdomain Visit Count
Next Post
Reverse of LeetCode 38 LintCode 420 Count and Say (Look and Say)