Table of contents
Open Table of contents
Description
Given an integer array nums
and an integer k
, return the length of the shortest non-empty subarray of nums
with a sum of at least k
. If there is no such subarray, return -1
.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [1], k = 1
Output: 1
Example 2:
Input: nums = [1,2], k = 4
Output: -1
Example 3:
Input: nums = [2,-1,2], k = 3
Output: 3
Constraints:
1 <= nums.length <= 10^5
-105 <= nums[i] <= 10^5
1 <= k <= 10^9
Solution
Idea
- We could use a prefix sum array to calculate the range sum and keep the result updated to find the minimum range.
- We could use a deque to keep a sliding window. The deque will keep the relevant indexes. The negative numbers will decrease the range sum and make the length of the subarray longer, so we can remove the index for the negative number.
- When the range sum is >= k, we can remove the head of the deque and update result.
Let’s use example 3 above to iterate through.
i | deque | res | note |
---|---|---|---|
0 | []->[0] | 4 | added 0 |
1 | [0]->[0,1] | 4 | added 1 |
2 | [0]->[0,2] | 4 | removed 1 |
3 | [0,2]->[2,3] | 3 | removed 0, added 3 |
Complexity: Time O(n), Space O(n).
Other ideas include:
- heap
- monotonic stack + binary search
Both have the same complexity: Time O(nlogn), Space O(n).
Java
class Solution {
public int shortestSubarray(int[] A, int K) {
int N = A.length, res = N + 1;
long[] sum = new long[N + 1];
for (int i = 0; i < N; i++) sum[i + 1] = sum[i] + A[i];
Deque<Integer> dq = new ArrayDeque<>();
for (int i = 0; i < N + 1; i++) {
while (!dq.isEmpty() && sum[i] - sum[dq.getFirst()] >= K) res = Math.min(res, i - dq.removeFirst());
while (!dq.isEmpty() && sum[i] <= sum[dq.getLast()]) dq.removeLast();
dq.addLast(i);
}
return res <= N ? res : -1;
}
}