Skip to content

LintCode 26 Inner Product

Published: at 06:23 AM

Table of contents

Open Table of contents

Description

LintCode question link

Given an array A with length N and an array B with length K. You can choose K numbers from array A with the following rules:

In other words that you can select one element from the leftmost or rightmost of the A array, the selected element will be removed. Then use the elements to create an array C in order of your selection. You are asked to find the maximum inner product of B and C.

The inner product of B and C is i=1K1Bi×Ci\displaystyle\sum_{i=1}^{K-1} B_i\times C_i

Constraints:

Example 1:

Input:

A = [2,3,5,1]
B = [2,1]
Output: 7

Explanation:

K=2
selectA0, C=[2], The reason why A2 can't be taken out directly is that A0, A1 and A3 are not taken out.
selectA1, C=[2,3]
B · C = 2 * 2 + 1 * 3 = 7

Example 2:

Input:

A = [1,4,3,2,5]
B = [1,2,3,4]
Output: 38

Explanation:

K=4
select A0, C=[1]
select A1, C=[1,4]
select A2, C=[1,4,3]
select A4, C=[1,4,3,5]
B · C = 1 * 1 + 2 * 4 + 3 * 3 + 4 * 5 = 38

Idea1

We can use dynamic programming for this question.

We use dp[i][j] to represent the max inner product if we selected i elements from the left and j elements from the right.

dp[i][j]={max(dp[i1][j]+A[i1]B[i+j1])if selected from leftmax(dp[i][j1]+A[nj]B[i+j1])if selected from rightdp[i][j] = \begin{cases} max(dp[i-1][j]+A[i-1]\cdot B[i+j-1]) &\text{if selected from left} \\ max(dp[i][j-1]+A[n-j]\cdot B[i+j-1]) &\text{if selected from right} \end{cases}

The final result is max(dp[i][Ki])max(dp[i][K-i]) for 0<=i<=K0<=i<=K.

Complexity: Time O(K2)O(K^2), Space O(K2)O(K^2).

Python

class Solution2:
    """dp, 7554 ms, 129.55 mb"""

    def getMaxInnerProduct(self, A, B):
        res, (n, k) = 0, map(len, (A, B))
        dp = [[0] * (k + 1) for _ in range(k + 1)]  # res for picking i from left, j from right
        for i in range(k + 1):
            for j in range(k - i + 1):  # try taking k-i from right
                if i - 1 >= 0:  # take from left
                    dp[i][j] = max(dp[i][j], dp[i - 1][j] + B[i + j - 1] * A[i - 1])
                if j - 1 >= 0:  # take from right
                    dp[i][j] = max(dp[i][j], dp[i][j - 1] + B[i + j - 1] * A[-j])
            res = max(res, dp[i][k - i])
        return res

Idea2

We can improve the space complexity by reducing the dp array because in the inner loop, the new status depend on dp[i-1][j] and dp[i][j-1].

Complexity: Time O(K2)O(K^2), Space O(K)O(K).

Python

class Solution:
    """dp, 6583 ms, 5.34 mb"""

    def getMaxInnerProduct(self, A, B):
        n, k = map(len, (A, B))
        dp = [0] * (k + 1)
        for i in range(k + 1):
            ndp = copy(dp)
            for j in range(k - i + 1):  # 只会取 k - i 个数,这样就不用再另外判断会不会越界了
                if i - 1 >= 0:
                    ndp[j] = max(ndp[j], dp[j] + B[i + j - 1] * A[i - 1])
                if j - 1 >= 0:
                    ndp[j] = max(ndp[j], ndp[j - 1] + B[i + j - 1] * A[-j])
            dp = ndp
        return max(dp)

Previous Post
AWS (Amazon Web Services) Tips and Cheatsheet
Next Post
How to Draw Circles and Arcs with Python Library Matplotlib